Fingerprinting Soybean Germplasm and Its Utility in Genomic Research.
نویسندگان
چکیده
The United States Department of Agriculture, Soybean Germplasm Collection includes 18,480 domesticated soybean and 1168 wild soybean accessions introduced from 84 countries or developed in the United States. This collection was genotyped with the SoySNP50K BeadChip containing greater than 50K single-nucleotide polymorphisms. Redundant accessions were identified in the collection, and distinct genetic backgrounds of soybean from different geographic origins were observed that could be a unique resource for soybean genetic improvement. We detected a dramatic reduction of genetic diversity based on linkage disequilibrium and haplotype structure analyses of the wild, landrace, and North American cultivar populations and identified candidate regions associated with domestication and selection imposed by North American breeding. We constructed the first soybean haplotype block maps in the wild, landrace, and North American cultivar populations and observed that most recombination events occurred in the regions between haplotype blocks. These haplotype maps are crucial for association mapping aimed at the identification of genes controlling traits of economic importance. A case-control association test delimited potential genomic regions along seven chromosomes that most likely contain genes controlling seed weight in domesticated soybean. The resulting dataset will facilitate germplasm utilization, identification of genes controlling important traits, and will accelerate the creation of soybean varieties with improved seed yield and quality.
منابع مشابه
Prospects of Genomic Prediction in the USDA Soybean Germplasm Collection: Historical Data Creates Robust Models for Enhancing Selection of Accessions
The identification and mobilization of useful genetic variation from germplasm banks for use in breeding programs is critical for future genetic gain and protection against crop pests. Plummeting costs of next-generation sequencing and genotyping is revolutionizing the way in which researchers and breeders interface with plant germplasm collections. An example of this is the high density genoty...
متن کاملSoybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding
Soybean Knowledge Base (http://soykb.org) is a comprehensive web resource developed for bridging soybean translational genomics and molecular breeding research. It provides information for six entities including genes/proteins, microRNAs/sRNAs, metabolites, single nucleotide polymorphisms, plant introduction lines and traits. It also incorporates many multi-omics datasets including transcriptom...
متن کاملAssociation Analysis for Important Quantitative and Morphological Traits in Cultivars and Advanced Lines of Soybean (Glycine max (L.)) using Microsatellite Markers
IExtended Abstract Introduction and Objective: The economic value of a genotype depends on its various traits and therefore the accurate knowledge of genetic behavior and identification of genomic locus involved in controlling these traits can help the breeder to improve genotypes. Material and Methods: In this study, the relationship between microsatellite markers with some important agrono...
متن کاملA BAC- and BIBAC-based physical map of the soybean genome.
Genome-wide physical maps are crucial to many aspects of advanced genome research. We report a genome-wide, bacterial artificial chromosome (BAC) and plant-transformation-competent binary large-insert plasmid clone (hereafter BIBAC)-based physical map of the soybean genome. The map was constructed from 78001 clones from five soybean BAC and BIBAC libraries representing 9.6 haploid genomes and t...
متن کاملGenome-wide association mapping of resistance to Phytophthora sojae in a soybean [Glycine max (L.) Merr.] germplasm panel from maturity groups IV and V
Phytophthora sojae, an oomycete pathogen of soybean, causes stem and root rot, resulting in annual economic loss up to $2 billion worldwide. Varieties with P. sojae resistance are environmental friendly to effectively reduce disease damages. In order to improve the resistance of P. sojae and broaden the genetic diversity in Southern soybean cultivars and germplasm in the U.S., we established a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- G3
دوره 5 10 شماره
صفحات -
تاریخ انتشار 2015